B.M.S COLLEGE FOR WOMEN AUTONOMOUS BENGALURU - 560004

END SEMESTER EXAMINATION - SEPTEMBER / OCTOBER 2022

B.Sc - II Semester
 Algebra-II and Caculus-II

Course Code: MAT2DSC02

Duration: $21 / 2$ Hours

QP Code: 2015
Max Marks: 60
I. Answer any SIX Questions:

1. Define index of a subgroup.
2. Find the order of the elements in the multiplicative group of $G=\{1,-1, i,-i\}$.
3. Find radius vector and the tangent to the curve $r=a \theta$
4. Find polar sub-tangent to the curve $r=a(1+\cos \theta)$ at $\theta=\frac{\pi}{3}$
5. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{6} x d x$
6. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{2} x \cos ^{2} x d x$
7. Evaluate $\int_{0}^{2} \int_{0}^{1} x y d x d y$
8. Evaluate $\int_{0}^{1} \int_{0}^{2} \int_{0}^{3}(x y z) d x d y d z$

II. Answer any TWO Questions:

(2x6=12)

1. Show that the set $Q_{-\{1\}}$, the set of rational numbers other that -1 is an abelian group under the operation * defined by $a * b=a+b+a b, \forall a, b \in Q_{-\{1\}}$. Also solve $2 * 5 * x=0$
2. Prove that if a is any element of a group G of order n then $a^{m}=e$ for any integer m if and only if n divides m .
3. State and prove Lagrange's theorem.
III. Answer any SIX Questions:
4. With usual notations, show that $\tan \varphi=\mathrm{r} \frac{\mathrm{d} \theta}{\mathrm{dr}}$
5. Find the pedal equation of $r^{2}=a^{2} \cos 2 \theta$
3.a) Find $\frac{d S}{d t}$ for the curve $x=a(t-\sin t)$ and $y=a(1-\cos t)$
b) Find the radius of curvature for $y=4 \sin x-\sin 2 x$ at $x=\frac{\pi}{2}$
6. Derive reduction formula for $\int \sin ^{n} x d x$ and hence evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x$
7. Evaluate $\int_{0}^{a} \frac{x^{4}}{\sqrt{a^{2}-x^{2}}} d x$
8. Find the surface area of solid generated by revolving the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ about X -axis.
9. Evaluate $\int(x+2 y) d x+(4-2 x) d y$ around the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ in the counter clockwise direction.
10. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$.
